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ABSTRACT: It has been suggested that the native state of a protein
acts as a kinetic hub that can facilitate transitions between nonnative
states. Using recently developed tools to quantify mediation
probabilities (“hub scores”), we quantify hub-like behavior in atomic
resolution trajectories for the first time. We use a data set of
trajectory ensembles for 12 fast-folding proteins previously published
by D. E. Shaw Research (Lindorff-Larsen, K.; et al. How Fast-
Folding Proteins Fold. Science 2011, 334, 517) with an aggregate
simulation time of over 8.2 ms. We visualize the free-energy
landscape of each molecule using configuration space networks, and show that dynamic quantities can be qualitatively
understood from visual inspection of the networks. Modularity optimization is used to provide a parameter-free means of
tessellating the network into a group of communities. Using hub scores, we find that the percentage of trajectories that are
mediated by the native state is 31% when averaged over all molecules, and reaches a maximum of 52% for the homeodomain and
chignolin. Furthermore, for these mediated transitions, we use Markov models to determine whether the native state acts as a
facilitator for the transition, or as a trap (i.e., an off-pathway detour). Although instances of facilitation are found in 4 of the 12
molecules, we conclude that the native state acts primarily as a trap, which is consistent with the idea of a funnel-like landscape.

■ INTRODUCTION

In the late 1990s, our understanding of protein folding
increased dramatically as the classical idea of folding pathways
was replaced with the more complicated ideas of energy
landscapes and funnels.1−4 This transition in thought is
represented iconically by schematic diagrams of rough,
funnel-shaped landscapes, with high free-energy unfolded states
at the top, and a low free-energy native state at the bottom. For
15 years, these have served as the de facto visualization of the
free-energy landscape of a protein. However, the true free-
energy landscape of a protein is many dimensional, and
unsuited for visualization as a funnel.
Just as the transition from folding pathways to funnels was

motivated by advances in experimental techniques, there is
another revolution in understanding occurring, this time
motivated by computation. Microsecond to millisecond
simulations enabled by parallel computing,5−7 distributed
computing,8−11 and GPU technology12,13 are becoming
increasingly common, and provide us with the ability to see
multiple folding and unfolding events for a variety of fast-
folding proteins. Enhanced sampling methods can also be
incorporated with these technologies to describe events on
even longer time scales.14−19 Using network analysis, with
specific conformations represented by nodes, and the
transitions between conformations represented by edges, we
can visualize the entire accessible free-energy landscape of a
protein in a single network graph.14,20−24 However, questions
still remain as to the best way to generate these graphs, and
how we should interpret their main features.
In particular, questions have recently arisen as to the role of

the native state, specifically whether it can be well-described as

a kinetic hub.9,22,25 This can be broken down into two key
questions. First, does the native state mediate nonnative-to-
nonnative transitions? Second, are native-state mediated
transitions faster or slower than transitions that are not
mediated by the native state? To answer the first question, we
introduced a metric (“hub scores”) that quantifies transition
path mediation in different regions of protein configuration
space networks26 by assigning each region i a score, between 0
and 1, which is the probability of region i being visited on a
transition path between any other two regions j and k. Using
this metric, we found that for a Go̅ model of protein A, the
native state was not a strong mediator: the hub score of the
native state was 0.12, indicating that 88% of the nonnative-to-
nonnative paths do not involve the native state. To address the
second key question, we use “native-state knockouts” (Markov
models with the native state removed), to compare mean first
passage times for nonnative-to-nonnative transitions with and
without the native state. A longer MFPT in the knockout would
indicate the native state acts as a facilitator, which provides a
short pathway between nonnative states where none existed
before. A shorter MFPT would indicate that the native state
acts as a trap that prevents the system from reaching the final
state.
We apply this analysis to an extensive data set: the set of

folding trajectories created by D. E. Shaw Research as reported
in Lindorff-Larsen et al.6 This data set comprises simulations of
12 different fast-folding proteins ranging from 10 to 80 amino
acids in length, with an aggregate sampling time of over 8.2 ms.
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The sampling was made possible using specialized hardware
(the Anton supercomputer27), and software (the Desmond MD
package) built for molecular dynamics. The analysis performed
in the original manuscript mainly regarded the order of
formation of different contacts in the folding process.
We examine here the segmentation of the configuration

space into regions, the properties of transitions between these
regions, and the visualization of the free-energy landscapes.
First, the simulation data are clustered into a set of microstates
for each molecule, which act as the nodes of a network, and
transitions in the underlying trajectories dictate the connections
between the nodes. The structure of the configuration space for
each molecule is visualized using network analysis, and we show
that dynamic properties can be visualized by examination of
network graphs. The microstates are further grouped into a
smaller number of communities using a modularity optimiza-
tion algorithm. We then use hub scores to determine how often
the native state is used as an intermediate on transition paths
connecting two nonnative states. In addition, we use native-
state knockouts to determine whether the native state is acting
as a facilitator, or a trap. Together, these two analyses provide a
quantitative way to measure hub-like activity of the native state.

■ RESULTS
Configuration Space Networks Can Reveal Dynamic

Quantities. Network graphs are used to visualize the folding
landscapes for each of the 12 molecules (Figures 1 and 2). The
detailed procedure for creating the networks is given in the
Experimental Section. In short, each node represents a
microstate, which is a cluster of configurations that are close
in configuration space, and the size of each node is proportional
to the statistical weight of that microstate. Links are shown
between microstates if the transition probability from one state
to another is greater than or equal to 0.001. Microstates are
further grouped into communities, which are shown by color.
We denote the community of microstates with configurations
close to the native structure (usually colored light-blue, but in
the case of BBL and BBA, gray as well) as the “native state”,
and refer to the remainder of the nodes as the “unfolded
ensemble”.
Upon inspection of the networks, it is clear that the unfolded

ensembles for each molecule are not fragmented: there are
many pathways connecting different parts of the unfolded
ensemble that do not involve the native state. The unfolded
ensembles of villin, PRB, chignolin, A3D, WW, and NTL9
appear particularly homogeneous: most of each unfolded
ensemble has aggregated into a densely packed circle that has
little noticeable substructure. The unfolded ensembles of PRG,
lambda, and BBL, in contrast, appear heterogeneous, with
individual communities broken off from a dense central core. It
has been previously shown by Beauchamp et al.,10 upon
analyzing the relaxation spectra of the 12 trajectory sets studied
here, that two-state models can accurately describe the folding
of the first set of molecules (villin, PRB, chignolin, A3D, WW,
and NTL9), whereas the latter set (PRG, lambda, and BBL)
displayed multistate folding behavior. It is significant that for
these two sets of molecules, a dynamic property (whether or
not the dynamics are “two-state”) can be rationalized from the
appearance of the network graph. This is because the force
minimization algorithm used to produce the network graphs
allows for the visual identification of community structure. Of
the three remaining molecules that have mild heterogeneity in
the unfolded ensemble (UVF, BBA, and trp-Cage), UVF and

BBA displayed multistate behavior, and trp-Cage displayed two-
state behavior.
For some of these molecules we can see large separation of

the native state from the rest of the map, indicating weak links
between the native and unfolded ensembles. This can be
quantified with the measure ϕ = lnn/2lun, where lnn is the sum of
the weights of directed native−native links and lun is the sum of
the weights of directed unfolded-native links. The graphs with
the highest ϕ values are shown in Figure 2, and have the largest
separation of the native state from the nonnative states. We also
find that ϕ values are correlated with unfolding times. The four
highest ϕ values predict which molecules have the four longest
unfolding times, in order. A plot of ϕ versus τu, the mean
unfolding time (as computed in Lindorff-Larsen et al.6), is given
in Figure 3. If chignolin, which has the smallest network, is
removed as an outlier, the top six φ values correspond to the
longest six unfolding times, in order. This correlation of ϕ with
τu allows one to predict which molecule will have a longer
unfolding time from simply visually inspecting the two network

Figure 1. Graphs of the eight molecules with the lowest ϕ values.
Graphs in the same panel are sized appropriately so that node sizes
(statistical weights) can be compared. A reference node with a
specified weight is given in each of the top and bottom panels. The
molecules are arranged in order of increasing ϕ. The nodes are
assigned a color according to their community, and for each molecule
the communities are sorted according to the weight of their highest-
weighted node, with the highest weight given the lowest index. The
colors are as follows: 1, light blue; 2, gray; 3, purple; 4, blue; 5, dark
blue; 6, green; 7, yellow; and 8, orange. Any community with an index
greater than 8 is also assigned the color orange.
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graphs, although we caution that this correlation is better for
larger ϕ values.
Hub Scores Are Not Larger for Native States. We

calculate the hub scores for each molecule, and they are given
in Figure 4: the solid circles mark the hub score of the native
state, while the open circles show the hub scores of other
communities in the network. To determine which community
corresponds to the native state, we find a cutoff (rnc) such that
only 5% of the snapshots in the trajectory are closer to the
native structure than the cutoff. The values of rnc are given for
each molecule in Table 1. Using 5 representative structures of
each microstate, the community with the most structures within
the cutoff is defined as the native state. For 10 of the 12
molecules, all of the structures are in the community marked in
Figure 4. For BBA, 89% of the structures within the cutoff are
in the gray community, with the remainder in the light-blue
community. For BBL, 62% of the structures within the cutoff
are in the light-blue community, and 34% of the structures are
in the gray community; these populations are considered close
enough that both communities should be considered “native”.

The hub scores show that a substantial number of nonnative-
to-nonnative transitions do not go through the native state. The
largest hub score obtained here for any native state is 0.52 for
both UVF and chignolin. This indicates that even for the
molecule with the highest hub score, almost half of the
nonnative-to-nonnative transitions are not mediated by the
native state. We find that both the size of the protein and the
folding time correlate poorly with the hub scores of the native
state (see Supporting Information). For 10 of the 12 molecules
examined, the community with the highest hub score is
nonnative. More significantly, the average hub score of the
native states across all molecules (0.31) is slightly lower than
the average hub score of the nonnative states (0.33). We can
conclude from this that the native state should not, generally,
be seen as exceptional in its role as a mediator.
We also find that the hub scores depend on the precise

definition of the communities as determined by the modularity
optimization algorithm. To demonstrate this, we started with
the predicted communities for PRG, and created three modified
community groups in which a progressively larger set of nodes
are removed from the native community (light blue) and added
to the first nonnative community (gray) (Figure S5). We then
compute the hub scores for each set of communities. As the
native community gets smaller, the hub score for the native
state decreases from 0.41 to 0.07. This indicates that the native
community predicted by the modularity optimization algorithm
is not fast-equilibrating. As such, we emphasize that hub scores
are only meaningful in the context of a given community
assignment, and although one can determine rules for an
“optimal” assignment to communities, the specific hub scores
obtained are strongly dependent on the assignment rules used.
More discussion on the choice of communities is given in
Supporting Information.

Removal of the Native State Reveals Trap-like
Behavior. Hub scores determine what percentage of transition
paths use the native state as an intermediate. However, this
does not fully determine the role of the native state. Does the
native state act as a “facilitator” that connects previously
disconnected regions of space? Or does the native state act
instead as a trap: an unnecessary detour on the way to the final
destination? To distinguish between these two possibilities, we
can examine the mean first passage times of transition between
different nonnative communities both in the normal network,

Figure 2. Graphs of the four molecules with the highest ϕ values. The
graphs are sized appropriately so that node sizes (statistical weights)
can be compared across graphs. The molecules are arranged in order
of increasing ϕ. The circled nodes in PRG are the members of
community 9; transitions to and from this region are largely mediated
by the native state. The colors of the nodes are assigned as in Figure 1.

Figure 3. Plot of the measure ϕ, which compares native−native links
versus native−nonnative links, against the mean unfolding time (τu) as
computed in Lindorff-Larsen et al,6 and given in Table 1.

Figure 4. Hub scores of all 12 molecules. The larger, solid circles show
the hub scores of native states, and are colored (either light blue or
gray) according to which community is native in Figures 1 and 2. The
native states are determined as described in the text.
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and a network where the native state has been excised. If the
native state acts as a facilitator between two states, the MFPT
between those states will increase when the native state is
removed. Conversely, the MFPT will decrease if the native state
acts as an unnecessary detour.
The MFPT are determined using the method described in

Dickson and Brooks.26 In short, to determine the MFPT to a
community B, a rate matrix is constructed (RB0) where all the
states in B are turned into probability sinks (the columns, or
“exit” terms are set to zero for each state). This matrix is then
diagonalized, and the quantity ⟨i|eRB0t|j⟩ = ⟨i|A eVtA−1|j⟩ is the
population, starting in state j that is in state i at time t, where
RB0 = AVA−1. The MFPT from every state i to the community
B is then determined by examining the population that has
reached B at different points in time. The case where the native
state is removed is created simply by removing from RB0 all
rows and columns corresponding to states in the native state.
The diagonal terms of the matrix are then recomputed in this
case as the opposite of the sum of the elements in each column,
such that the sum of each column is zero.
Let τ be the normal MFPT between two states, and let τk be

the MFPT with the native state removed. The quantity
(τk − τ)/τ measures fractional deviation of a MFPT upon
removal of the native state. This quantity is computed for every
pair of nonnative communities, and histograms for each
molecule are shown in Figure 5. For 8 of the 12 molecules,
(τk − τ)/τ (which we will denote hereafter as Δ) is strictly less
than zero, indicating that the native state acts as a trap for every
pair of nonnative states: its removal, on average, speeds up
transitions between these states.
For the remaining 4 molecules, the exceptions mainly involve

a single community. In BBL, the native state acts as a facilitator
(Δ = 0.68) for transitions to or from community 2 (gray).
Figure 1 shows that the gray region in BBL lies adjacent to the
native state, and as stated before, contains 34% of the native
population. It is thus reasonable that the native state would act
as a facilitator to community 2. In PRG, the native state acts as
a strong facilitator (Δ = 1.3) to community 9 (which comprises
the nodes circled in Figure 2). This can be predicted from the
graph structure: there are three connections from community 9
to the native state, and only one connection to the remaining
nonnative states. In lambda, the native state facilitates
transitions to community 7 (yellow) with Δ = 0.3. Although
the yellow community lies adjacent to the native state in Figure
1, this would be hard to tell from appearance alone, as there are
many connections from the community 7 to both the native
and the remaining nonnative communities. Similarly, the native
state in UVF facilitates transitions to community 3 (purple)
with Δ = 0.2. Structurally, all of the native-facilitated states have
collapsed structures that are similar to the native state, but have
stabilizing interactions which differ from those present in the
native state (see Figure S2).
We emphasize that despite these few facilitating interactions,

we find that the native state primarily does not act as a
facilitator for transitions between nonnative communities. Out
of 3262 nonnative-to-nonnative transitions, only 119 (or 3.6%)
have Δ > 0. Even the largest effect of native state removal is
modest: a nonnative-to-nonnative transition in PRG takes 2.3
times longer without the native state. This not only reveals that
the primary role of the native state is a trap, but also speaks
directly to experiments that involve thermodynamic variables,
such as pH, temperature, or pressure, which destabilize the
native state. For experiments where folding is initiated by an

abrupt change of a thermodynamic variable, these results
suggest that the unfolded ensemble is ergodic. Consequently, if
the thermodynamic variable is varied periodically to drive the
proteins in and out of the folded state, the refolding kinetics
will not depend on the specific path along which the protein
denatures.

■ DISCUSSION AND CONCLUSIONS
Above we determined communities using an initial rmsd
clustering using Ward’s algorithm, followed by an aggregation
of states using modularity optimization. Modularity optimiza-
tion algorithms have been shown to have a “resolution limit”, in
that they have trouble detecting communities that are smaller
than a certain size.28 As a result, the communities predicted
here for the native state could be too large. As such the hub
scores for the native community may be seen as upper bounds,

Figure 5. Histograms of the quantity (τk − τ)/τ, also referred to as Δ
in the text, which measures the impact of removing the native state on
the mean first passage time between two nonnative communities. The
quantity is measured for transitions between all possible pairs of
nonnative states. For a particular transition between two nonnative
states, (τk − τ)/τ < 0 indicates that the native state acts as a trap: its
removal results in a faster transition, on average. Conversely, (τk − τ)
/τ > 0 indicates that the native state acts as a facilitator: its removal
results in slower transitions between the two states.
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as reducing the size of the communities for the native state may
cause the hub scores to decrease, as demonstrated in Figure S5.
Similarly, larger native communities will also overemphasize the
effect of the native state as a facilitator. This can be directly
observed in Figures S5 and 2, where decreasing the size of the
native state removes the connections from native to community
9, and thus destroys its role as a facilitator. Therefore, we expect
that any failure of the modularity optimization algorithm used
here will not affect the main conclusions of this paper. To
remain objective, we chose to define communities without
incorporating any information of the native structure. It is
possible that using an rmsd cutoff from a given native structure
would prevent the definition of overly large communities for
the native state. However, this would introduce many
adjustable parameters to the analysis, as we found that it is
unlikely that a single rmsd cutoff would work for all of the
molecules studied here.
The simulation temperatures used in these experiments

ranged from 290 to 370 K, and the average population fraction
in the unfolded ensemble is 55%. As we have previously shown,
high simulation temperatures can decrease hub scores of the
native state by stabilizing higher energy but higher entropy
transition paths between unfolded states.26 It remains to be
seen whether lower simulation temperatures would affect the
results presented here, and undoubtedly enhanced sampling
methods would be required to obtain such results. However, we
note that for the four molecules with the lowest population
fraction in the unfolded ensemble (NTL9, chignolin, WW, and
UVF; see Table 1), we do not see higher than average hub
scores for the native state, nor a decrease in the connectivity in
the unfolded ensemble.
The replacement of schematics of funnels with graphs of

networks like those presented here would enhance our
understanding of protein dynamics. Upon visual examination
of a single graph, one can develop an intuitive understanding of
the observed unfolding times, as well as the partitioning of the
nonnative ensemble. The graphs produced above show that
although there are a large number of possible pathways along
which to fold, these pathways typically overlap and interconvert
extensively. However, there is also significant variation from
one molecule to the other. For BBL, UVF, lambda, and PRG,

we show that this analysis is able to detect native-state
facilitation, in that we find nonnative states that are more
quickly accessible through the native state than through
nonnative states. Therefore, we expect network analysis to
continue to be a useful tool to reveal the structure of
configuration space networks for other biomolecules not
studied here, particularly those that are not fast-folding.

■ EXPERIMENTAL SECTION
Trajectories. The simulation details for the trajectories are

described at length in the original work, and we will not reproduce
them here. We obtained the Cα coordinates for trajectories of the 12
molecules from D. E. Shaw Research. Details of the data set are given
in Table 1. The trajectories contain snapshots of the Cα coordinates of
the molecule sampled every 200 ps. There is between 104 and 2936 μs
of sampling for each molecule, and each molecule has at least 10
folding and unfolding transitions. The simulations are all run using the
CHARMM22* force field.29

Clustering into Microstates. We use MSMBuilder230,31 to
cluster the trajectories into microstates. We first subsample the data
to obtain snapshots every 50 ns, then cluster the trajectories using root
mean squared distance (rmsd) and Ward’s algorithm.32,33 The number
of clusters chosen for most molecules is related to the number of
conformations via nclusters = nconformations/10, which is slightly larger than
the number of clusters used by Beauchamp et al.10 For NTL9, a
smaller number of clusters (3117, the same used by Beauchamp et
al10) is found to be sufficient. A larger number of clusters is used for
BBA. The number of clusters used for each molecule is given in Table
1.

Determining Communities. After clustering into microstates, the
resulting networks have between 213 and 3117 nodes. For analysis, we
partition each network into a much smaller number of communities.
We use an algorithm that works by optimizing a quantity known as the
modularity, which compares connections within and between different
communities.34 The modularity for directed networks35 is given by
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Aij is the number of links from i to j, ki
out is the total number of links

from i, kj
in is the total number of links into j, and 2m is the total

number of links in the network. ci denotes the community to which
node i is assigned, and δ(i,j) returns 1 if i = j and 0 otherwise.

Lancichinetti and Fortunato36 recently compared several commun-
ity detection algorithms using a common benchmark. Here we use one

Table 1. Molecule-Specific Properties and Parametersa

Nres Ntraj ttot (μs) T(K) Pu τu(μs) nclusters ncom rnc(Å) native PDB

chignolin (CLN) 10 1 106 340 0.21 2.2 213 11 0.55 1UAO
trp-cage 20 1 208 290 0.82 3 417 14 1.27 2JOF
BBA 28 2 325 325 0.78 5 999 17 2.35 1FME
villin 35 1 125 360 0.76 0.9 251 8 1.13 2F4K
WW 35 2 1137 360 0.21 80 2274 26 1.21 2F21 (4−39)
NTL9 39 4 2936 355 0.14 175 3117 31 0.53 2HBA (1−39)
BBL 47 2 429 298 0.81 7 860 15 4.69 2WXC
protein B (PRB) 47 1 104 340 0.71 1.6 208 10 3.31 1PRB (7−53)
homeodomain (UVF) 52 2 327 360 0.26 9 654 9 3.37 2P6J
protein G (PRG) 56 4 1155 350 0.60 37 2312 19 1.15 1MI0 (10−65)
α3D (A3D) 73 2 707 370 0.47 31 1414 20 2.77 2A3D
λ-repressor 80 4 643 350 0.79 13 1294 19 2.43 1LMB (6−85)

aNres is the number of amino acid residues; Ntraj is the number of trajectories used for analysis, with combined duration ttot; T is the simulation
temperature; Pu is the fraction of the population in the nonnative ensemble, computed as τf/(τu + τf), where τu and τf are the mean unfolding and
folding times, taken from Lindorff-Larsen et al.;6 nclusters is the number of microstates constructed using hierarchical clustering; ncom is the number of
communities determined by the modularity optimization algorithm. The native Protein Data Bank structure used for each molecule is given in the
column “native PDB”, where the numbers in parentheses, when present, denote the subset of residues used. Configurations that are closer than rnc to
the native structure are considered “native” and used to determine which community corresponds to the native state.
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of the most accurate and efficient algorithms tested therein: the
modularity optimization algorithm of Blondel et al.,37 which begins
with each node in its own community and merges communities
together that maximally increase the modularity. The algorithm has
been applied to systems of over 100 million nodes,37 and defines
communities in the largest network used here (3117 nodes) almost
instantaneously. Determining communities using modularity optimi-
zation algorithms has the advantage that one does not need to
determine how many communities there are in the system beforehand.
The number of communities determined for each molecule range from
8 to 31, and are given in Table 1.
Creating Network Graphs. We build the network graphs in

Figures 1 and 2 using the program Gephi.38 The size of the nodes are
proportional to their statistical populations, however for each graph
there is a minimum node size that is 30 times smaller than the size of
the largest node. The orientation of the nodes is obtained using a force
minimization algorithm built into Gephi (ForceAtlas), which
introduces a repulsive force between all nodes, but attracts nodes
that are linked together with a force that is proportional to the weights
of the links. The weights of the links are determined as follows. First,
weights of directed links with values between 1 and 1000 are
determined as wij = 1000pij, where pij is the transition probability from
i to j. Weights of undirected links are then determined as the average
of the two directed links. The graph is first allowed to minimize
without adjusting for node sizes (i.e., with overlapping nodes), and
then a second minimization is subsequently performed while adjusting
for node sizes to prevent overlap.
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